A Note on Zariski Pairs

نویسنده

  • Ichiro Shimada
چکیده

Definition. A couple of complex reduced projective plane curves C1 and C2 of a same degree is said to make a Zariski pair, if there exist tubular neighborhoods T (Ci) ⊂ P of Ci for i = 1, 2 such that (T (C1), C1) and (T (C2), C2) are diffeomorphic, while the pairs (P, C1) and (P , C2) are not homeomorphic; that is, the singularities of C1 and C2 are topologically equivalent, but the embeddings of C1 and C2 into P 2 are not topologically equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrminantal Groups and Zariski Pairs of Sextic Curves

A series of Zariski pairs and four Zariski triplets were found by using lattice theory of K3 surfaces. There is a Zariski triplet of which one member is a deformation of another.

متن کامل

On Arithmetic Zariski Pairs in Degree 6

We define a topological invariant of complex projective plane curves. As an application, we present new examples of arithmetic Zariski pairs.

متن کامل

A Zariski Pair in Affine Complex Plane

We present a Zariski pair in affine complex plane consisting of two line arrangements, each of which has six lines. In the seminal paper [3], Zariski started the study of the fundamental groups of the complements of plane algebraic curves. Among other things, he constructed a pair of plane curves with the same degree and the same local singularities, but non-isomorphic fundamental groups, which...

متن کامل

Classical Zariski Pairs

We compute the fundamental groups of all irreducible plane sextics constituting classical Zariski pairs

متن کامل

Zariski Pairs on Sextics I

We study Zariski pairs of sextics which are distinguished by the Alexander polynomials. For this purpose, we present two constructive methods to produce explicit sextics of non-torus type with given configuration of simple singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996